Cu & Cu.ALLOYS

- The Basic application of the contact wire is carrying current for railway traction.
- Electric trains that collect current from overhead lines use a device such as a pantograph, Low collector or trolley pole. It presses against the underside of the lowest overhead wire that is called CONTACT WIRE.
- Mainly contact wire made from copper or copper alloy with different cross section area from 80 mm² to 193 mm² in different alloy form.

Different Type of Copper alloy is mentioned below:

1) Normal and High Strength Copper:-

Mainly used in INDIA RAILWAY-RDSO.

Copper ETP is still the most universal metal, but is increasingly being replaced by alloys with better characteristics. Non-alloyed Cu offer the best possible conductivity, and is typically used in contact wires for tramways and conventional railway lines but is most appropriate for auxiliary conductor and feeder cables.

2) Copper-Silver Alloy:-

This alloy offer electrical and mechanical characteristics similar to copper, but has better thermal stability. This allows higher over current on DC lines, without increasing the wear on the contact wire.

3) Copper-Cadmium Alloy:-

Copper cadmium combines high strength with good conductivity. With unsurpassed flex, CuCd is highly resistance to the frequent vibrations that ideal choice for high energy efficiency, reduced voltage drop and operational cost saving.

4) Copper-Magnesium Alloy:-

Copper Magnesium has the highest tensile strength when compared to other alloy, making it the perfect alloy for contact wire in high speed line with speed well above 300 km/h. Together it is the perfect alloy for the messenger/catenary cable, having the appropriate strength to carry the entire catenary system.

5) Copper-Tin Alloy:-

The development of a high performance Copper-Tin alloy was an imperative, displaying the right balance of electrical and mechanical properties. CuSn has applications for use in the contact wires for both high-speed and conventional railway lines.

Identification of Different Type of Contact wire :

*As per EN 50149:2012

All wire manufactured from alloys shall be clearly identified. For normal and high strength copper and copper-silver, copper-cadmium. Copper-magnesium and copper- tin alloy the method of identification shall be by identification grooves as shown in below figure.

of copper-silver alloy have two identical identification grooves on the upper lobe of the wire. Contact wires made of copper-tin alloy have one identification groove on the upper lobe of the wire at an angle of 24° from the vertical. Contact wires made of copper-magnesium alloy have three identification grooves on the upper lobe of the wire.

Contact wires made of copper-cadmium alloy have one identification groove on the upper lobe of wire.

Contact wires made of pure copper (Cu-ETP) do not have identification grooves.

10 mm (max)

6.92 ± 0.20 mm

R0.40

Identification of Different Sections of Contact wire :

*As per EN 50149:2012

Whatever cross section of the contact wire id used, the dimensions of clamping grooves are accordance with either TYPE A or TYPE B as given in below figure.

6.50 mm

mm(max)

4.50 n

TYPE A CLAMPING GROOVE

TYPE B CLAMPING GROOVE

51° 0.00°

R0.40

-2.00°

27º 0.00°

-2.00

Also, whatever clamping grooves is used; the main two types of profile are in accordance with either CIRCULAR TYPE or FLATTENED TYPE as given in below figure

CIRCULAR TYPE WIRE

FLATTENED TYPE WIRE

Nomenclature based on clamping grooves and shape of the contact wire Example, AC-107

1) We can manufacture AC-107 with Type A Clamping groove having Circular bottom.

- 2) We can manufacture AC-107 with Type B Clamping groove having Circular bottom.
- 3) We can manufacture AC-107 with Type A Clamping groove having Flat bottom.
- 4) We can manufacture AC-107 with Type B Clamping groove having Flat bottom.

Identification of Contact wire based on Composition

*As per EN 50149:2012

		Com	nmon alloy c	omposition	s and desig	nations					
		Some po	ssible mate	rial compos	itions and d	esignation	6				
Material desig	nation		Composition in %								
			Element								
Material group	Symbol		Cu	Bi	0	Р	Pb	Other	elements		
						•		Total	Excluding		
	Cu-FTP	Min.	99.90a	-	-	-	-	-	Ag, O		
	Ou-L II	max.	-	0.0005	0.040 b	-	0.005	0.03			
		Min.	99.90a	-	-	-	-	-	Ag, O		
Normal and high		max.	-	-	0.040 b	-	-	0.04			
strength copper	005	Min.	99.95	-	-	-	-	-	Ag		
	Cu-OF	max.	-	0.0005	С	-	0.005	0.03			
	0, 1105	Min.	99.95	-	-	0.002	-	-	Ag, P		
	Cu-HCP	max.	-	0.0005	с	0.007	0.005	0.03			
			C.	Di	0		A =:	Other	elements		
			Cu	ы	U		Ag	Total	Excluding		
Normal and high	CuAg, 0.1	Min.	Rest	-	-	-	0.08	-	Ag, O		
strength copper-silver- alloy		max.	-	0.0005	0.04	-	0.012	0.03			
		1			Other	Other elements					
			Cu	Mg	Sn	Cd	р	Total	Excluding		
		Min.	Rest	0.1	-	-	-	-	Mg, P		
Copper-magnesium	CuMg, 0.2	max.		0.3	-	-	0.01	0.01			
alloy		Min.	Rest	0.4	-	-	-	-	Mg, P		
	CuMg, 0.5	max.		0.7	-	-	0.01	0.01			
_		Min.	Rest	-	1.15	-	-	-	Sn		
Copper-tin alloy	CuSn, 0.2	max.		-	0.55		-	0.01			
		Min.	Rest	-	-	0.5	-	-	Cd		
Copper- cadmium-	CuCd, 0.7	max.		-	-	0.8	-	0.01			
alloy		Min.	Rest	-	-	0.8	_	-	Cd		
	CuCd, 1.0	max.		-	-	1.2	_	0.01			
a Including silver, up t	o a maximum o	of 0,015 %.	1	1							

b Oxygen content up to 0,060 % is permitted, subject to agreement between the purchaser and the supplier.

c The oxygen content shall be controlled by the manufacturer so that the material conforms to the hydrogen embritlement requirements.

NOTE 1 Composition of all copper types are in accordance with EN 1977:1998.

NOTE 2 The total of other elements (than copper) is defined in EN 1977: 1998 as the sum of Ag, As, Bi, Cd, Co, Cr, Fe, Mn, Ni, 0, P, Pb, S, Sb, Se, Si, Sn, Te and Zn, subject to the exclusion of any individual elements indicated.

Physical Constant :

*As per EN 50149:2012

Material Group	Cu-ETP & Hard Darwn	CuAg	CuMg	CuSn	CuCd				
Nominal Density at 20°C (g/cm ³)	8.89	8.89	8.89	8.92	8.945				
Final Modulus of Elasticity (Gpa)	120	120	120	120	120				
CLE (per °C)	17 x 10 ⁻⁶	17 x 10⁻ ⁶	17 x 10 ⁻⁶	17 x 10 ⁻⁶	17 x 10 ⁻⁶				
Maximum Resistivity			22.4 for CuMg 0.2 Normal Conductivity	20.05 for CuSn 0.2 Normal Conductivity	20.05 for CuCd 0.7				
at 20°C ohm.mm²/Km	17.77	CuAg 0.1	21.55 for CuMg 0.2 High Conductivity	21.55 for CuSn 0.2	21.55 for CuCd 1.0				
			27.78 for CuMg 0.5	High Conductivity *					
Temperature Coefficient (per °C)	0.0038	0.0038	0.0031 0.0027 for CuMg 0.5	0.0032	Agreed between purchaser and manufacturer				
* CuSn 0.2 (High Conductivity) was previous denoted CuSn 0.4									
) In a temperature range from -50°C up to 100°C the coefficient of temperature for the resistance is constant									

Contact Wire as per EN 50149 : 2012

Maximum Resistance/Kilometer

	Material designation a								
Nominal cross section mm²	Cu-ETP Cu-OF Cu-FRHC Cu-HCP	CuAg 0.1	CuMg 0.2	CuMg 0.5	CuSn 0.2	CuCd 0.7	CuCd 1.0 CuSn0.2 (high conductivity) b CuMg 0.2 (high conductivity)		
80	0.229	0.229	0.289	0.385	0.309	0.258	0.278		
100	0.183	0.183	0.231	0.286	0.247	0.207	0.222		
107	0.171	0.171	0.216	0.268	0.231	0.193	0.208		
120	0.153	0.153	0.192	0.239	0.206	0.172	0.185		
150	0.122	0.122	0.154	0.191	0.165	0.138	0.148		
a value	a value in Ω/Km at 20°C - Calculated on minimum cross section area								
b CuSr	CuSn 0.2 (Gigh Conductivity) was previous denoted CuSn 0.4								

Tensile Strength, Breaking load and after Elongation Fraction

Madarial	Designation	Nominal cross section	Percentage fract	elongation after ure A200	Minimum tensile	Minimum	
Material	Designation	mm²	min %	Max. %	strength Mpa a	kN	
		80	3	10	355	27.5	
	Cu-ETP	100	3	10	355	34.5	
Normal strength Copper		107	3	10	350	36.3	
	CuOF	120	3	10	330	38.4	
		150	3	10	310	45.1	
	0 575	80	3	8	375	29.1	
High strength copper		100	3	8	375	36.4	
and high strength	CuHCP	107	3	8	360	37.4	
copper-silver alloy		120	3	8	360	41.9	
	CuAg 0.1	150	3	Centracture A200Minimum tensile strength Mpa aMinimum tensile strength Mpa aMinimum breaking to kN31035527.531035534.531035036.331031045.13837529.13837536.43836037.43836041.93836052.431035036.331036528.331035036.331035036.331035036.331035036.331035050.931046035.731045040.731045040.731035050.931045040.731045040.731045040.731045040.731045040.731045040.731045040.731045040.731050051.931050051.931042061.131040057.031040057.031040.768.4<	52.4		
		80	3	10	365	28.3	
Normal strength		100	3	10	360	34.9	
Normal strength	CuAg 0.1	107	3	10	350	36.3	
copper-silver alloy		120	3	10	350	40.7	
		150	3	10	350	50.9	
Copper-magnesium alloy	0.14.00	80	3	10	460	35.7	
	Cuivig 0.2	100	3	10	450	43.7	
	CuMg 0.2 (high	107	3	10	440	45.7	
		120	3	10	430	50.1	
	conductivity)	150	3	10	420	61.1	
		80	3	10	520	40.4	
		100	3	10	510	49.5	
Copper-magnesium	CuMg 0.5	107	3	10	500	51.9	
alloy		120	3	10	490	57.0	
		150	3	10	470	68.4	
		80	2	8	460	40.4	
	CuSn 0.2	100	2	8	450	49.5	
Copper-Tin Alloy		107	2	8	430	51.9	
	CuSn 0.2 (high	120	2	8	420	57	
	conductivity)	150	2	8	420	68.4	
		80	2	7	430	33.4	
		100	2	7	430	41.7	
Copper-cadmium Alloy	CuCd0.7	107	2	7	430	44.6	
		120	2	7	430	50.1	
		150	2	7	430	62.6	
		80	2	7	455	35.3	
		100	2	7	445	43.2	
Copper-Tin Alloy	CuCd1.0	107	2	7	445	46.2	
		120	2	7	445	51.8	
		150	2	7	445	64.7	

Contact Wire as per IS 3476:1986

HARD DRAW COPPER TROLLY AND CONTACT WIRE

Cross Sectional Area	Standard weight a	Maximum Resistance at 20°C b	Minimum Tensile Strength	Conventional limit of elasticity c	Minimum Elongation in 200 mm	Minimum Number of bending			
mm²	kg/km	ohm/km	Kg/mm²	Kg/mm ²	%	Nos			
80	711.2	0.2275	38	32.5	3	8			
100	889	0.1818	36.5	31	3	7			
107	951.2	0.1699	36.5	31	3	7			
150	1333.5	0.1212	35.6	31	3	6			
161	1431	0.1125	33	-	3	6			
193	1715.8	0.0936	31	-	4	5			
a valu	a value correspond to the standard cross sectional area								
b valu	value correspond to the minimum cross sectional area and minimum tensile strength of wire								
c For	information only	у							

HARD DRAW CADMIUM-COPPER TROLLY AND CONTACT WIRE

Cross Sectional Area	Standard weight	Maximum Resistance at 20°C	Minimum Tensile Strength	Conventional limit of elasticity	Minimum Elongation in 200 mm	Minimum Number of bending
	а	b		С		
mm²	kg/km	ohm/km	Kg/mm²	Kg/mm²	%	Nos
100	894.5	0.2116	44	37.5	2.5	7
107	957.1	0.1977	44	37.5	2.5	7
150	1342	0.1411	44	37.5	2.5	6

a = value correspond to the standard cross sectional area

b = value correspond to the minimum cross sectional area and minimum tensile strength of wire

c = For information only

Contact Wire as per RDSO AIL-ETI-OHE-76-6-97

Cross Section	Diameter of Standar CCC wire Weight p rod Km a		Standard Weight per Km a	Resistance per Km at 20°C b	Tensile Strength	Conventional Limit of Elasticity	Elongation in 200 mm	No. of Bending	Hardness
Nominal	Min	Max	Nominal	Nominal	Min	Min	Min	Min	Min
mm²	mm	mm	Kg	Ohms	Kgf/mm ²	Kgf/mm ²	%	Nos	BHN
107	19	22	951.2	0.166	36.5	31	3	7	107
150	23	27	1333.5	0.1184	36.5	31	3	6	107
161	23	27	1431.3	0.1103	36.5	31	3	6	107
193	23	27	1715.8	0.0921	36.5	31	3	5	107
a & h =	Valua	corres	pond to nomin	al cross section a	rea of HDG	Contact wire			

